Contribute to ML4Code

Open-ended Knowledge Tracing

Naiming Liu, Zichao Wang, Richard G. Baraniuk, Andrew Lan. 2022

education code generation

Knowledge tracing refers to the problem of estimating each student’s knowledge component/skill mastery level from their past responses to questions in educational applications. One direct benefit knowledge tracing methods provide is the ability to predict each student’s performance on the future questions. However, one key limitation of most existing knowledge tracing methods is that they treat student responses to questions as binary-valued, i.e., whether the responses are correct or incorrect. Response correctness analysis/prediction is easy to navigate but loses important information, especially for open-ended questions: the exact student responses can potentially provide much more information about their knowledge states than only response correctness. In this paper, we present our first exploration into open-ended knowledge tracing, i.e., the analysis and prediction of students’ openended responses to questions in the knowledge tracing setup. We first lay out a generic framework for open-ended knowledge tracing before detailing its application to the domain of computer science education with programming questions. We define a series of evaluation metrics in this domain and conduct a series of quantitative and qualitative experiments to test the boundaries of open-ended knowledge tracing methods on a real-world student code dataset.

Similar Work