Content Aware Source Code Change Description Generation

P. Loyola, E. Marrese-Taylor, J.A. Balazs, Y. Matsuo, F. Satoh. International Natural Language Generation Conference 2018


We propose to study the generation of descriptions from source code changes by integrating the messages included on code commits and the intra-code documentation inside the source in the form of docstrings. Our hypothesis is that although both types of descriptions are not directly aligned in semantic terms —one explaining a change and the other the actual functionality of the code being modified— there could be certain common ground that is useful for the generation. To this end, we propose an architecture that uses the source code-docstring relationship to guide the description generation. We discuss the results of the approach comparing against a baseline based on a sequence-to-sequence model, using standard automatic natural language generation metrics as well as with a human study, thus offering a comprehensive view of the feasibility of the approach.