Contribute to ML4Code

A Statistical Semantic Language Model for Source Code

Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, Tien N. Nguyen. FSE 2013

   
language model

Recent research has successfully applied the statistical n-gram language model to show that source code exhibits a good level of repetition. The n-gram model is shown to have good predictability in supporting code suggestion and completion. However, the state-of-the-art n-gram approach to capture source code regularities/patterns is based only on the lexical information in a local context of the code units. To improve predictability, we introduce SLAMC, a novel statistical semantic language model for source code. It incorporates semantic information into code tokens and models the regularities/patterns of such semantic annotations, called sememes, rather than their lexemes. It combines the local context in semantic n-grams with the global technical concerns/functionality into an n-gram topic model, together with pairwise associations of program elements. Based on SLAMC, we developed a new code suggestion method, which is empirically evaluated on several projects to have relatively 18–68% higher accuracy than the state-of-the-art approach.

Similar Work